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Abstract

Very deep convolutional networks have been central to the
largest advances in image recognition performance in recent
years. One example is the Inception architecture that has
been shown to achieve very good performance at relatively
low computational cost. Recently, the introduction of resid-
ual connections in conjunction with a more traditional archi-
tecture has yielded state-of-the-art performance in the 2015
ILSVRC challenge; its performance was similar to the lat-
est generation Inception-v3 network. This raises the ques-
tion: Are there any benefits to combining Inception architec-
tures with residual connections? Here we give clear empiri-
cal evidence that training with residual connections acceler-
ates the training of Inception networks significantly. There
is also some evidence of residual Inception networks out-
performing similarly expensive Inception networks without
residual connections by a thin margin. We also present sev-
eral new streamlined architectures for both residual and non-
residual Inception networks. These variations improve the
single-frame recognition performance on the ILSVRC 2012
classification task significantly. We further demonstrate how
proper activation scaling stabilizes the training of very wide
residual Inception networks. With an ensemble of three resid-
ual and one Inception-v4 networks, we achieve 3.08% top-5
error on the test set of the ImageNet classification (CLS) chal-
lenge.

Introduction

Object recognition is a central task for computer vision and
artificial intelligence in general. Strong vision models are
key enabling components of AI systems that can process
visual inputs. Their applications include computer user in-
terfaces (gesture recognition), web search, OCR systems,
autonomous transportation, medical imaging, areal imag-
ing, robotics and image processing. Before 2012, special-
ized solutions were required for each specific application do-
main. Since then, deep convolutional neural networks have
become mainstream to address these tasks. Convolutional
neural networks go back to the 1980s (Fukushima 1980)
and (LeCun et al. 1989), but recent good results (Krizhevsky,
Sutskever, and Hinton 2012) on the large scale ImageNet
image-recognition benchmark ILSVRC (Russakovsky et al.
2014) has lead to a revived interest in their use. The
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same neural network architecture “AlexNet” (Krizhevsky,
Sutskever, and Hinton 2012) has been applied to a large
number of application domains with good results.

The same architectures that work well for object detection
can be applied successfully to a wide variety of computer vi-
sion tasks, including object-detection (Girshick et al. 2014),
segmentation (Long, Shelhamer, and Darrell 2015), human
pose estimation (Toshev and Szegedy 2014), video classifi-
cation (Karpathy et al. 2014), object tracking (Wang and Ye-
ung 2013), and super-resolution (Dong et al. 2014). These
examples are but a few of the multitude of applications to
which deep convolutional networks have been very success-
fully applied ever since. Moreover it has been demonstrated
that architectural improvements of convolutional networks
that target recognition performance tend to translate to per-
formance gains for the other tasks as well.

This universal applicability motivates our focus on recog-
nition models for the widely used ILSVRC12 object-
recognition benchmark (Russakovsky et al. 2014) on which
the task is to classify the images into one (or five) of a
thousand different classes. The dataset comprises of 1.2 mil-
lion training images, 50,000 validation images and 100,000
test images. All of them are divided up equally between the
1000 classes. This benchmark has been a very popular task
to measure the quality of object recognition solutions since
2010.

In this work we study the combination of two of the most
recent ideas: Residual connections (He et al. 2015) and the
latest revised version of the Inception architecture (Szegedy
et al. 2015b). In (He et al. 2015), it is argued that residual
connections are inherently important for training very deep
architectures. Since Inception networks tend to be very deep,
it is natural to replace the filter concatenation stage of the
Inception architecture with residual connections. This would
allow Inception to reap the benefits of the residual approach
while retaining its computational efficiency.

Besides a straightforward integration, we have also stud-
ied whether Inception without residual connections can be
made more efficient by making it deeper and wider. For
that purpose, we evaluated a new version named Inception-
v4 which has a more uniform simplified architecture and
more inception modules than Inception-v3. Historically,
Inception-v3 had inherited a lot of the baggage of the earlier
incarnations. The technical constraints chiefly came from
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the need for partitioning the model for distributed training
using DistBelief (Dean et al. 2012). Now, after migrating
our training setup to TensorFlow (Abadi et al. 2015) these
constraints have been lifted, which allowed us to simplify
the architecture significantly. The details of that simplified
architecture are described in the Architectural Choices Sec-
tion starting on page 2.

In this paper, we will compare the two pure Inception vari-
ants, Inception-v3 and v4, with similarly expensive hybrid
Inception-ResNet versions. Admittedly, those models were
picked in a somewhat ad hoc manner with the main con-
straint being that the parameters and computational com-
plexity of the models should be somewhat similar to the cost
of the non-residual models. We have tested bigger and wider
Inception-ResNet variants and they performed at the level
of Inception-ResNet-v2 on the ImageNet classification chal-
lenge (Russakovsky et al. 2014) dataset.

Lastly, we report an evaluation of an ensemble of all mod-
els described. As it was apparent that both Inception-v4
and Inception-ResNet-v2 performed similarly well, each ex-
ceeding state-of-the art single-frame performance on the Im-
ageNet validation dataset, we wanted to see how a combina-
tion pushes the state-of-the-art on this well studied dataset.
Surprisingly, we found that gains on the single-frame per-
formance do not translate into similarly large gains on en-
sembled performance. Nonetheless, it still allows us to re-
port 3.1% top-5 error on the validation set with four models
ensembled setting a new state-of-the-art, to the best of our
knowledge.

Related Work

Convolutional networks have become popular in large scale
image recognition tasks after (Krizhevsky, Sutskever, and
Hinton 2012). Some of the next important milestones were
Network-in-network by (Lin, Chen, and Yan 2013), VG-
GNet by (Simonyan and Zisserman 2014) and GoogLeNet
(Inception-v1) by (Szegedy et al. 2015a).

Residual connections were introduced in (He et al. 2015)
in which they give convincing theoretical and practical ev-
idence for the advantages of utilizing additive merging of
signals both for image recognition, and especially for ob-
ject detection. The authors argued that residual connections
are inherently necessary for training very deep convolutional
models. Our findings do not seem to support this view, at
least for image recognition. However it might require more
experiments with even deeper networks to fully understand
the true benefits of residual connections. In the experimental
section we demonstrate that it is not very difficult to train
very deep competitive networks without utilizing residual
connections. However the use of residual connections seems
to improve the training speed greatly, which is alone a great
argument for their use.

The Inception deep convolutional architecture was intro-
duced as GoogLeNet in (Szegedy et al. 2015a), here named
Inception-v1. Later the Inception architecture was refined in
various ways, first by the introduction of batch normaliza-
tion (Ioffe and Szegedy 2015) (Inception-v2). Later by ad-
ditional factorization ideas in the third iteration (Szegedy et

Figure 1: Residual connections as introduced in (He et al.
2015). On the left is the original residual connection. On the
right is an optimized version that reduces the computational
cost by the use of a 1× 1 convolution.

al. 2015b) which will be referred to as Inception-v3 in this
report.

Architectural Choices

Pure Inception blocks

Our older Inception models used to be trained in a parti-
tioned manner, where each replica was partitioned into mul-
tiple sub-networks in order to be able to fit the whole model
in memory. However, the Inception architecture is highly
tunable, meaning that there are a lot of possible changes to
the number of filters in the various layers that do not af-
fect the quality of the fully trained network. In order to opti-
mize the training speed, we used to tune the layer sizes care-
fully in order to balance the computation between the vari-
ous model sub-networks. In contrast, with the introduction
of TensorFlow (Abadi et al. 2015), our most recent models
can be trained without partitioning the replicas. This is en-
abled in part by recent memory optimizations to backpropa-
gation, achieved by carefully considering which tensors are
needed for gradient computation and structuring the com-
putation to reduce the number of such tensors. Historically,
we have been relatively conservative about changing the ar-
chitecture and restricted our experiments to varying isolated
network components while keeping the rest of the network
stable. Not simplifying earlier choices resulted in networks
that looked more complicated that they needed to be. In our
newer experiments, for Inception-v4 we decided to shed this
unnecessary baggage and made uniform choices for the In-
ception blocks for each grid size.

The full configuration of the Inception-v4 network is out-
lined in Figures 2, which contains the overall schema and
stem configuration and Figure 3, which details the construc-
tion of the interior modules.

Residual Inception Blocks

For the residual versions of the Inception networks, we use
cheaper Inception blocks than the original Inception. Each
Inception block is followed by filter-expansion layer (1 ×
1 convolution without activation) which is used for scaling
up the dimensionality of the filter bank before the residual
addition to match the depth of the input. This is needed to
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compensate for the dimensionality reduction induced by the
Inception block.

We tried several versions of the residual version of In-
ception. Only two of them are detailed here. The first one
“Inception-ResNet-v1” has roughly the computational cost
of Inception-v3, while “Inception-ResNet-v2” matches the
raw cost of the newly introduced Inception-v4 network.
However, the step time of Inception-v4 proved to be signifi-
cantly slower in practice, probably due to the larger number
of layers.

Another small technical difference between our residual
and non-residual Inception variants is that in our Inception-
ResNet experiments, we used batch-normalization only on
top of the traditional layers, but not on top of the residual
summations. It is reasonable to expect that a thorough use of
batch-normalization should be advantageous, but the imple-
mentation of batch-normalization in TensorFlow was con-
suming a lot of memory and we would have needed to de-
crease the overall number of layers, if batch-normalization
had been used everywhere.

The full configuration of the Inception-Resnet-v1 network
is outlined in Figure 6 which contains the overall schema
and stem configuration and Figure 4 that has the detailed
configuration of the interior modules.

The full configuration of the Inception-Resnet-v2 network
uses the schema in Figure 6, the stem in Figure 2, and the
modules in Figure 5.

Figure 2: On the left is the overall schema for the pure
Inception-v4 network. On the right is the detailed compo-
sition of the stem. Note that this stem configuration was also
used for the Inception-ResNet-v2 network outlines in Fig-
ures 5, 6. V denotes the use of ‘Valid’ padding, otherwise
‘Same’ padding was used. Sizes to the side of each layer
summarize the shape of the output for that layer.

Scaling of the Residuals

We found that if the number of filters exceeded 1000, the
residual variants started to exhibit instabilities and the net-
work just “died” early in the training, meaning that the last
layer before the average pooling started to produce only ze-
ros after a few tens of thousands of iterations. This could
not be prevented, either by lowering the learning rate, or by
adding an extra batch-normalization to this layer.

We found that scaling down the residuals before adding
them to the previous layer activation seemed to stabilize the
training. In general we picked some scaling factors between
0.1 and 0.3 to scale the residuals before their being added to
the accumulated layer activations (cf. Figure 7).

A similar instability was observed by (He et al. 2015) in
the case of very deep residual networks and they suggested a
two-phase training where the first “warm-up” phase is done
with very low learning rate, followed by a second phase with
high learning rate. We found that if the number of filters is
very high, then even a very low (0.00001) learning rate is
not sufficient to cope with the instabilities and the training
with high learning rate had a chance to destroy its effects.
We found it much more reliable to scale the residuals.

Even where the scaling was not strictly necessary, it never
seemed to harmed the final accuracy, but it helped to stabi-
lize the training.

Training Methodology

We have trained our networks with stochastic gradient de-
scent, utilizing the TensorFlow (Abadi et al. 2015) dis-
tributed machine learning system using 20 replicas, each
running a NVidia Kepler GPU. Our earlier experiments used
momentum (Sutskever et al. 2013) with a decay of 0.9, while
our best models were achieved using RMSProp (Tieleman
and Hinton ) with a decay of 0.9 and ε = 1.0. We used a
learning rate of 0.045, decayed every two epochs using an
exponential rate of 0.94. In addition, gradient clipping (Pas-
canu, Mikolov, and Bengio 2012) was found to be useful to
stabilize the training. Model evaluations are performed using
a running average of the parameters computed over time.

Experimental Results

First we observe the evolution of the top-1 and top-5
validation-error of the four variants during training. After
the experiment was conducted, we have found that our con-
tinuous evaluation was conducted on a subset of the valida-
tion set which omitted about 1700 blacklisted entities due to
poor bounding boxes. It turned out that the omission should
have been only performed for the CLSLOC benchmark, but
yields somewhat incomparable (more optimistic) numbers
when compared to other reports including some earlier re-
ports by our team. The difference is about 0.3% for top-1
error and about 0.15% for the top-5 error. However, since
the differences are consistent, we think the comparison be-
tween the curves is a fair one.

On the other hand, we have rerun our multi-crop and en-
semble results on the complete validation set consisting of
50,000 images. Also the final ensemble result was also per-
formed on the test set and sent to the ILSVRC test server
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Figure 3: The schema for interior grid modules of the pure Inception-v4 network. The 35× 35, 17× 17 and 8× 8 grid modules
are depicted from left to right. These are the Inception-A, Inception-B, and Inception-C blocks of Figure 2 respectfully.

Figure 4: The schema for interior grid modules of the Inception-ResNet-v1 network. The 35 × 35, 17 × 17 and 8 × 8 grid
modules are depicted from left to right. These are the Inception-A, Inception-B, and Inception-C blocks of the schema on the
left of Figure 6 for the Inception-ResNet-v1 network, respectfully.

Figure 5: The schema for interior grid modules of the Inception-ResNet-v2 network. The 35 × 35, 17 × 17 and 8 × 8 grid
modules are depicted from left to right. These are the Inception-A, Inception-B and Inception-C blocks of the schema on the
left of Figure 6 for the Inception-ResNet-v2 network, respectfully.
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Figure 6: On the left is the overall schema for the Inception-
Resnet-v1 and Inception-Resnet-v2 network. While the
schema are the same for both networks, the composition of
the stem and interior modules differ. The stem of Inception-
Resnet-v1 is shown to the right, while the stem of Inception-
Resnet-v2 is the same as the pure Inception-v4 network, de-
picted on the right of Figure 2. The interior modules are de-
noted in Figure 4 and Figure 5 respectfully. V denotes the
use of ‘Valid’ padding, otherwise ‘Same’ padding was used.
Sizes to the side of each layer summarize the shape of the
output for that layer.

Figure 7: The general schema for scaling combined
Inception-ResNet modules. We expect that the same idea
is useful in the general ResNet case, where instead of the
Inception block an arbitrary subnetwork is used. The scal-
ing block just scales the last linear activations by a suitable
constant, typically around 0.1, but we found that deeper net-
works require lower constants.

for validation to verify that our tuning did not result in over-
fitting. We would like to stress that this final validation was
done only once and we have submitted our results only twice
in the last year: once for the BN-Inception paper and later
during the ILSVR-2015 CLSLOC competition, so we be-
lieve that the test set numbers constitute a true estimate of
the generalization capabilities of our model.

Figure 8: Top-1 error evolution during training of pure
Inception-v3 vs a residual network of similar computational
cost. The evaluation is measured on a single-crop on the non-
blacklist images of the ILSVRC-2012 validation set. The
residual model was training much faster, but reached slightly
worse final accuracy than the traditional Inception-v3.

Figure 9: Top-1 error evolution during training of pure
Inception-v3 vs a residual Inception of similar computa-
tional cost. The evaluation is measured on a single-crop on
the non-blacklist images of the ILSVRC-2012 validation set.
The residual version was training much faster and reached
slightly better final accuracy than the traditional Inception-
v4.

Finally, we present some comparisons between various
versions of Inception and Inception-ResNet. The models
Inception-v3 and Inception-v4 are deep convolutional net-
works not utilizing residual connections while Inception-
ResNet-v1 and Inception-ResNet-v2 are Inception style net-
works that utilize residual connections instead of filter con-
catenation.
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Figure 10: Top-5 error evolution of all four models (single-
model, single-crop). This shows the improvement due to
larger model size. Although the residual version converges
faster, the final accuracy seems to mainly depend on the
model size.

Figure 11: Top-1 error evolution of all four models (single-
model, single-crop). This paints a similar picture as the top-5
evaluation in Figure 10.

Network Top-1 Error Top-5 Error

BN-Inception (Ioffe and Szegedy 2015) 25.2% 7.8%
Inception-v3 (Szegedy et al. 2015b) 21.2% 5.6%
Inception-ResNet-v1 21.3% 5.5%
Inception-v4 20.0% 5.0%
Inception-ResNet-v2 19.9% 4.9%

Table 1: Single-crop – single-model experimental results.
Reported on the non-blacklisted subset of the validation set
of ILSVRC 2012.

Network Crops Top-1 Error Top-5 Error

ResNet (He et al. 2015) 10 25.2% 7.8%
Inception-v3 (Szegedy et al. 2015b) 12 19.8% 4.6%
Inception-ResNet-v1 12 19.8% 4.6%
Inception-v4 12 18.7% 4.2%
Inception-ResNet-v2 12 18.7% 4.1%

Table 2: 10/12-crop evaluations – single-model experimental
results. Reported on all the 50,000 images of the validation
set of ILSVRC 2012.

Network Crops Top-1 Error Top-5 Error

Inception-v3 (Szegedy et al. 2015b) 144 18.9% 4.3%
Inception-ResNet-v1 144 18.8% 4.3%
Inception-v4 144 17.7% 3.8%
Inception-ResNet-v2 144 17.8% 3.7%

Table 3: 144-crop evaluations – single-model experimental
results. Reported on the all 50,000 images of the validation
set of ILSVRC 2012. In comparison (He et al. 2015) report a
Top-1 Error of 19.4% and Top-5 Error of 4.5% for ResNet-
151 but with a different ‘dense’ evaluation strategy.

Network N Top-1 Error Top-5 Error

ResNet (He et al. 2015) 6 N/A 3.6%
Inception-v3 (Szegedy et al. 2015b) 4 17.3% 3.6%
Inception-v4(+Residual) 4 16.4% 3.1%

Table 4: Ensemble results with 144-crop/dense evalua-
tion. Reported on the all 50,000 images of the valida-
tion set of ILSVRC 2012. The second column (N) de-
notes how many models were ensembled. For Inception-
v4(+Residual), the ensemble consists of one pure Inception-
v4 and three Inception-ResNet-v2 models and were evalu-
ated both on the validation and on the test-set. The test-set
performance was 3.08% top-5 error verifying that we don’t
over-fit on the validation set.

Table 1 shows the single-model, single-crop top-1 and
top-5 error of the various architectures on the validation set.

Table 2 shows the performance of the various models with
a small number of crops: 10 crops for ResNet as was re-
ported in (He et al. 2015), for the Inception variants, we have
used the 12-crop evaluation as as described in (Szegedy et al.
2015a).

Table 3 shows the single-model performance of the vari-
ous models using a 144-crop evaluation. These are compet-
itive in comparison to the reported 19.4% top-1 and 4.5%
top-5 error rate reported in (He et al. 2015), albeit with a
slightly different ‘dense’ evaluation strategy. For the incep-
tion networks, the 144-crop strategy was used as described
in (Szegedy et al. 2015a).

Table 4 compares ensemble results. For the pure resid-
ual network the 6-model dense evaluation result is reported
from (He et al. 2015). For the inception networks 4 mod-
els were ensembled using the 144-crop strategy as described
in (Szegedy et al. 2015a).

Open source implementations of the Inception-ResNet-v2
and Inception-v4 models in this paper as well as pre-trained
weights are available at the TensorFlow Models github page:
github.com/tensorflow/models.

Conclusions

We have presented three new network architectures in detail:

• Inception-ResNet-v1: a hybrid Inception version that
has a similar computational cost to Inception-v3
from (Szegedy et al. 2015b).

• Inception-ResNet-v2: a costlier hybrid Inception version
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with significantly improved recognition performance.

• Inception-v4: a pure Inception variant without residual
connections with roughly the same recognition perfor-
mance as Inception-ResNet-v2.

We studied how the introduction of residual connections
leads to dramatically improved training speed for the In-
ception architecture. Our latest models (with and without
residual connections) outperform all our previous networks,
just by virtue of the increased model size, while keeping
the overall number of parameters and computational cost in
check compared to competing approaches.
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